منابع مشابه
On the Invariance Equation for Heinz Means
We solve the so-called invariance equation in the class of Heinz means, that is, we give necessary and sufficient conditions for the constants 0 p,q,r 1 such that the identity Hp(Hq(x,y),Hr(x,y)) = Hp(x,y) (x,y ∈ R+) holds true where the Heinz mean Hp is defined for 0 p 1 as Hp(x,y) = xpy1−p + x1−pyp 2 . The Taylor expansion of the Heinz mean is used. Mathematics subject classification (2010): ...
متن کاملA Generalized Singular Value Inequality for Heinz Means
In this paper we will generalize a singular value inequality that was proved before. In particular we obtain an inequality for numerical radius as follows: begin{equation*} 2 sqrt{t (1-t)} omega(t A^{nu}B^{1-nu}+(1-t)A^{1-nu}B^{nu}) leq omega(t A + (1- t) B), end{equation*} where, $ A $ and $ B $ are positive semidefinite matrices, $ 0 leq t leq 1 $ and $ 0 leq nu leq frac{3}{2}.$
متن کاملA Singular Value Inequality for Heinz Means
We prove a matrix inequality for matrix monotone functions, and apply it to prove a singular value inequality for Heinz means recently conjectured by X. Zhan.
متن کاملSingular Value Inequalities for Heinz Means
We prove a matrix inequality for matrix monotone functions, and apply it to prove a singular value inequality for Heinz means recently conjectured by X. Zhan.
متن کاملC Quadratic Interpolation of Meshes
2 Mathematical Preliminaries 3 2.1 Barycentric Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Inscribed Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Bezier Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Derivatives . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2018
ISSN: 1331-4343
DOI: 10.7153/mia-2018-21-53